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ABSTRACT Anewenergeticmaterial, nitrate ester 1 (NEST-1), has shown promise
as a powerful, technologically attractive explosive. Its physical properties under
compression, however, are currently unknown. Accurate density functional
calculations together with a reliable empirical van der Waals correction are
employed to predict the isothermal hydrostatic equation of state for this material
prior to any known experimental results. The accuracy of results obtained from
this approach was tested against experimentally known NEST-1 equilibrium
properties and found to be excellent.

SECTION Statistical Mechanics, Thermodynamics, Medium Effects

R ecently synthesized by Chavez et al.,1 a novel ener-
getic nitrate ester, 2,3-bis-hydroxymethyl-2,3-dinitro-
1,4-butanediol tetranitrate, shows promising proper-

ties for use in explosives applications. Herein, this new
material will be referred to as NEST-1 (Nitrate ESTer-1),
although it has also been termed nitrate ester molecule 1.1

NEST-1 exhibits sensitivity properties similar to those of
pentaerythritol tetranitrate (PETN), and predictions of its
performance properties indicate that it is at least as powerful
an explosive as cyclotetramethylene tetranitramine (HMX).1

Importantly, NEST-1 has a relatively low melting point
of 85-86 �C as compared to its decomposition point of
141 �C.1 This means that NEST-1 can be safely melted and
cast into amold, potentiallymaking it useful for awide variety
of applications. Further characterization is required to investi-
gate the potential use of this material.

NEST-1 has a molecular structure similar to that of PETN.
However, insteadof fivecarbonatoms, it has six.Twoconnected
carbon atoms constitute the center of themolecule, eachbound
by one NO2 group and two CH2ONO2 groups, as depicted in
Figure 1, giving it the overall chemical formula of C6H8N6O16.
The NEST-1 crystal has a monoclinic unit cell with P21/n
symmetry and includes 4 molecules. This structure, combined
with its crystal packing, make NEST-1 the most dense nitrate
ester yet synthesized, with a density of 1.917 g/cm3.1

To explore future applications of NEST-1 as an energetic
material, itsmechanical and thermodynamical properties are
required as an input to engineering modeling. One such
fundamental property is its equation of state (EOS). Unfortu-
nately, experimental measurement of the EOS of NEST-1 is
costly and currently unavailable. However, it was recently
found (see Supporting Information) that properties of ener-
getic materials under compression, such as their equations of
state, can be reliably predicted by combining accurate density
functional theory (DFT) results with the empirical van der
Waals (vdW) correction suggested by Neumann and Perrin2

for molecular crystals. The vdW term has the form VAB(r) =
dAB(r)C6,ABr

-6, where dAB is a damping function and C6,AB is
the coefficient for an empirically fit pairwise interaction
between atoms A and B (see ref 2 for additional details).

The Vienna Ab-initio Simulation Package3,4 was used to
perform all DFT calculations using the Perdew-Burke-
Ernzerhof functional5 with projector-augmented wave poten-
tials6,7 and the Neumann-Perrin vdW correction.2 Only the
gammapoint was used to sample the Brillouin zone because of
the large unit cell size.8 The DFT calculations were performed
using an energy cutoff of 700 eV and an electronic energy
convergence toleranceof10-6 eV,which,whencomparedwith
calculations using a range of cutoffs from 400-1000 eV,
yielded a convergence better than 0.0015 eV for energy per
atom, and 0.015 eV/Å for forces. The conjugate-gradient algo-
rithmwas employed to relax all structures until the maximum
force on any atom in the unit cell was less than 0.03 eV/Å.

Figure 1. Schematic of a NEST-1 molecule.
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The experimental structure at ambient conditions was
relaxed without constraints to determine the calculated equi-
librium structure. Hydrostatic-compression simulations were
performedby scaling the volumeof the unit cell from100% to
60% of the calculated equilibrium volume. Relaxations of the
unit-cell shape and atomic coordinates were performed at
intermediate steps of 2%. The calculated unit-cell properties
at equilibriumaredisplayedandcomparedwith experimental
values1 inTable 1. The agreementof the vdW-DFTcalculations
with the experimental structure is excellent, yielding an error
in unit-cell volume of approximately 0.6%. In contrast, DFT
calculations without vdW corrections gave an error in volume
of about 13%.

The lattice constants a, b, and c are reported in Figure 2 as
a function of pressure. The b and c lattice constants exhibit
a relatively smooth monotonic behavior, but the a lattice
constant, while still monotonic, first descends more steeply
with increasing pressure and then plateaus in the range of 22
to 32 GPa. This plateau occurs over a region where further
compression along the a axis is difficult without a rotation and

bending of the nitro groups primarily with respect to the
b axis. Completion of this required change, however, is not
favored until the pressure reaches around 32GPa,whereupon
compression along the a axis becomes easier. Up to 27 GPa,
the computational results for all three lattice constants are
well reproduced using fifth-degree polynomials with the
fitting coefficients given in Table 2. Although these polyno-
mials provide a compactway of numerically summarizing the
computational results up to 27 GPa, they should not be used
for greater pressures.

From the hydrostatic compression simulations, the iso-
thermal EOS was obtained and is shown in Figure 3 as a
function of the volume compression ratio, η � V/V0, where
V and V0 are the compressed and uncompressed volumes,
respectively. It is a commonpractice to fit the EOS data points
(either experimental or calculated) by an analytic function of
pressure, P, versus η, assuming as parameters the zero
pressure isothermal bulk modulus B0 and its pressure deriva-
tiveB00 .

9-11 Such fits canbeused to conveniently represent the
whole set of numerical data points. In some cases, fitting to an
analytic EOS is also used to smooth the experimental data. In
addition, if the functional form is physically viable, the
analytic EOS obtained from a fit to the data over some lower
pressure and compression range can be successfully used to
extrapolate the results to higher pressures and compressions.
In this work, we fit the vdW-DFTdata points using the analytic
Birch-Murnaghan EOS,10

P ¼ 3
2
B0ðη-7=3 -η-5=3Þ 1þ 3

4
ðB0

0 -4Þðη-2=3 -1Þ
� �

ð1Þ

for pressures up to the point closest to 5 GPa, and found that
B0=15.9 GPa, and B00 =7.1. Figure 3 shows that this fit yields
good agreement with the calculated pressure versus volume
data, not only for pressures up to 5 GPa but also throughout
the entire range of compressions studied; this range extends
up to 44 GPa;well above the Chapman-Jouguet pressure of
40 GPa. Note, however, that care should be exercised when
comparing values of B0 and B00 obtained from this fit to those
obtained froma fit to experimental resultswhen they become

Figure 2. Lattice constants as a function of pressure within the
volume compression ratio range of η=V/V0=0.60-1.00. The solid
lines are included as guides to the eye.

Table 1. Equilibrium Unit-Cell Properties of NEST-1

a (Å) b (Å) c (Å) R β γ volume (Å3)

Chavez et al. 8.1228 23.0560 8.5072 90 113.953 90 1456.01

vdW-DFT 8.1894 23.0608 8.5166 90.00 114.449 90.00 1464.18

% diff vdW-DFT 0.82% 0.02% 0.11% 0% 0.44% 0% 0.56%

pure DFT 8.4831 24.0160 8.9550 90.00 115.295 90.00 1649.48

% diff pure DFT 4.44% 4.16% 5.26% 0% 1.18% 0% 13.29%

Table 2. Fifth-Degree Polynomial Fits for PressureDependence of
Lattice Constants and Unit-Cell Volumea

parameter C0
C1

(� 10-1)
C2

(� 10-2)
C3

(� 10-3)
C4

(� 10-5)
C5

(� 10-7)

a 8.188 -1.276 1.291 -0.883 2.963 -3.663

b 23.023 -3.152 3.064 -2.018 6.868 -9.097

c 8.520 -2.303 2.199 -1.276 3.754 -4.343
aEach constant Cn has units of Å/(GPa)

n.
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available. One problem is that the values of B0 and B00 depend
on both the functional form of the EOS assumed9-11 and the
pressure range of the fit. This point, as well as other prob-
lems that can arise in the analysis of the experimental and
theoretical data, is discussed in detail by Menikoff and
Sewell.12 Moreover, in the case of NEST-1, we have found that
increasingB0 can often be largely compensatedbydecreasing
B00 . For example, both sets [B0 = 15.9 GPa and B00 =7.1] and
[B0 = 17.7 GPa and B00 = 6.4] provide good fits to the
computed data, when used with the analytic Birch-Murnag-
hamEOS, as shown inFigure 3. Therefore, it is theP-V curves
depicted in Figure 3, which are all much the same in the
higher pressure region of interest, that should be tested
experimentally rather than the precise values of B0 and
B00 that can be used to generate these curves assuming the
Birch-Murnaghan EOS.

In summary, the hydrostatic EOS of the new energetic
material NEST-1 was predicted by performing accurate calcu-
lations using vdW-corrected DFT. The results were success-
fully tested by comparing the equilibrium structural
parameters with experiment. The high pressure data will be
important for future mesoscale modeling of NEST-1, and
should help stimulate experimental measurements of its
EOS.

SUPPORTING INFORMATION AVAILABLE Figure and
caption showing comparison of computed vdW-DFT data to
corresponding experimental results for β-HMX, PETN-1, and
R-RDX. This material is available free of charge via the Internet at
http://pubs.acs.org.
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